首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2447篇
  免费   459篇
  国内免费   350篇
化学   1988篇
晶体学   19篇
力学   122篇
综合类   27篇
数学   164篇
物理学   936篇
  2024年   5篇
  2023年   38篇
  2022年   58篇
  2021年   78篇
  2020年   78篇
  2019年   81篇
  2018年   59篇
  2017年   69篇
  2016年   79篇
  2015年   107篇
  2014年   139篇
  2013年   188篇
  2012年   228篇
  2011年   242篇
  2010年   178篇
  2009年   174篇
  2008年   186篇
  2007年   184篇
  2006年   146篇
  2005年   116篇
  2004年   98篇
  2003年   91篇
  2002年   75篇
  2001年   77篇
  2000年   81篇
  1999年   55篇
  1998年   60篇
  1997年   47篇
  1996年   46篇
  1995年   32篇
  1994年   18篇
  1993年   26篇
  1992年   14篇
  1991年   18篇
  1990年   9篇
  1989年   9篇
  1988年   12篇
  1987年   11篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1966年   2篇
  1931年   1篇
  1924年   1篇
  1884年   1篇
排序方式: 共有3256条查询结果,搜索用时 15 毫秒
11.
针对传统CFD数值计算方法难以实现风力机动态旋转及其旋转状态下的流固耦合计算,本文结合格子玻尔兹曼(LBM)方法易于处理动态复杂边界的特点及大涡模拟(LES)方法在非稳态涡流结构捕捉上的优势,采用LBM-LES联合方法进行三维风力发电机整机气动性能及尾流结构仿真研究,同时采用尺度自适应方法对尾涡结构进行跟踪和精细化计算。针对NREL PhaseⅥ型试验机进行模拟,得到了与实验结果吻合的流动形态及尾流结构演变规律,分析了尾流区速度演变规律并对比了不同亚格子湍流模型对计算结果的影响.  相似文献   
12.
Introducing the top partner is a common way to cancel the largest quadratically divergent contribution to the Higgs mass induced by the top quark. In this work, we study single top partner production in the tZ channel at eγ collision in the littlest Higgs model with T-parity(LHT). Since it is well known that polarized beams can enhance the cross section, we analyze the signal via polarized electron beams,and photon beams. we have selected two decay modes for comparison, based on the leptonic or the hadronic decays of the W and Z from the top partner. We then construct a detailed detector simulation, and choose a set of cuts to enhance signal significance. For mode A(B), the capacity for exclusion in this process at s~(1/2)=3TeV is comparable to the current experimental limits with L=1000(500) fb~(-1). If the integrated luminosity can be increased to 3000 fb~(-1), the top partner mass+mTcan be excluded up to 1350(1440) GeV at 2σ level. We also considered the initial state radiation effect, and find that this effect reduces the excluding ability of the eγ collision on the the top partner mass by approximately 10 GeV. Moreover, the ability to exclude the LHT parameter space at eγ collision complements the existing research.  相似文献   
13.
Herein, we report that highly chemoselective and enantioselective reduction of 2-vinyl-substituted pyridines has been achieved for the first time. The reaction, which uses chiral spiro-bicyclic bisboranes as catalysts and HBpin and an acidic amide as reducing reagents, proceeds through a cascade process involving 1,4-hydroboration followed by transfer hydrogenation of a dihydropyridine intermediate. The retained double bond in the reduction products permits their conversion to natural products and other useful heterocyclic compounds by simple transformations.  相似文献   
14.
Plasmonic nanostructures with large absorption areas under resonant excitation have been utilized extensively in photon-assisted applications. In this work, dodecahedral Au nanobowls were first prepared by an easy and template-free method only through the introduction of H2PtCl6 and I during the growth procedure. The Au nanobowls show electron-field enhancement due to the high curvature of the bowl edge, the open region, and dodecahedral morphology. Au/Pt nanobowls, which couple plasmonic Au and catalytic Pt, were then constructed as plasmonic electrocatalysts for methanol oxidation. The mass activity reached 497.6 mA mg−1 under visible-light illumination, which is 1.9 times that measured in the dark. Simultaneously, the electrocatalytic stability is also greatly improved under light excitation. The enhanced properties of the plasmonic Au/Pt electrocatalysts are ascribed to the synergistic effect of the plasmon-enhanced photothermal and hot-carrier effects on the basis of experimental investigations. This work thus offers an effective methodology to construct efficient plasmonic electrocatalysts for fuel cells.  相似文献   
15.
Lithium-sulfur batteries have been considered as potential electrochemical energy-storage devices owing to their satisfactory theoretical energy density. Nonetheless, the inferior conversion efficiency of polysulfides in essence leads to fast capacity decay during the discharge/charge cycle. In this work, it is successfully demonstrated that the conversion efficiency of lithium polysulfides is remarkably enhanced by employing a well-distributed atomic-scale Fe-based catalyst immobilized on nitrogen-doped graphene (Fe@NG) as a coating of separator in lithium-sulfur batteries. The quantitative electrocatalytic efficiency of the conversion of lithium polysulfides is determined through cyclic voltammetry. It is also proven that the Fe-NX configuration with highly catalytic activity is quite beneficial for the conversion of lithium polysulfides. In addition, the adsorption and permeation experiments distinctly indicate that the strong anchoring effect, originated from the charge redistribution of N doping into the graphene matrix, inhibits the movement of lithium polysulfides. Thanks to these advantages, if the as-prepared Fe@NG catalyst is combined with polypropylene and applied as a separator (Fe@NG/PP) in Li-S batteries, a high initial capacity (1616 mA h g−1 at 0.1 C), excellent capacity retention (93 % at 0.2 C, 70 % at 2 C), and superb rate performance (820 mA h g−1 at 2 C) are achieved.  相似文献   
16.
Trifloxystrobin (TFS) is a widely used strobilurin fungicide and its residues accumulating in animal-derived food could result in potential harm to consumers. By optimization of extraction solvents and cleanup sorbents, a residue analysis method for TFS and its metabolite trifloxystrobin acid (TFSA) was established in milk, eggs and pork based on QuEChERS sample preparation and LC–MS/MS. The calibration curves exhibited good linearity with determination coefficients (R2) >0.9930 over the range of 0.5–250 ng/ml for both TFS and TFSA. The recoveries of the two analytes were 81–100% with RSD 3–10% and 76–96% with RSD 2–13%, respectively. The limit of quantification (LOQ) was 1 ng/g for both analytes. The milk, egg and pork samples, 30 each, were collected from the 30 main producing regions in China, and residues of TFS and TFSA were analyzed. The concentrations of both analytes were lower than the corresponding LOQs and maximum residue limits. Long-term dietary risk assessment showed that the hazard quotients were 0.001–0.003%, indicating an absence of unacceptable risks in milk, eggs and pork to the health of common consumers in China.  相似文献   
17.
过渡金属磷化物电位低且比容量高, 是有发展前景的锂离子电池(LIBs)负极材料. 其中, ZnP2属于双活性负极材料, Zn与P都能与Li+发生反应, 储Li+性能更具有竞争力. 但是, 对于ZnP2的锂化机理及产物尚不明确. 采用第一性原理计算和电化学测试方法研究了ZnP2的电子性质和电化学性能, 通过理论计算和实验测试相结合阐述了ZnP2的锂化机制. 首先, 以密度泛函理论(DFT)计算揭示了ZnP2的锂化机理、Li+扩散路径、势垒和理论比容量(1477 mAh/g). 其次, 通过直流电弧等离子体法及固相烧结法合成ZnP2, 并测试其首圈放电曲线, 显示放电容量为1439 mAh/g, 与理论计算结果相近. 此外, 薄膜X射线衍射(XRD)检测最终产物成分为LiZn和Li3P, 与DFT计算结果一致.  相似文献   
18.
Intercellular proximity labeling has emerged as a promising approach to enable the study of cell-cell interactions (CCIs), but the efficiency of current platforms is limited. Here, we use Ru(bpy)32+ to construct an efficient photocatalytic proximity labeling (PPL) system on the cell surface that allows the highly discriminative CCI detection with spatiotemporal resolution. Through the mechanism study and quantitative characterization on living cells, we demonstrate that the singlet-oxygen (1O2) mechanism is more efficient and specific than the single electron transfer (SET) mechanism in Ru-mediated PPL. Ru(bpy)32+ catalysts with different cell-anchoring moieties are prepared to facilitate the catalyst loading on primary cells. Finally, based on this system, we develop a “live” T cell receptor (TCR) multimer with TCR-T cells that could sensitively identify and discriminate cells presenting antigens of different affinity, providing a powerful tool to better understand the heterogeneity of antigen presenting cells.  相似文献   
19.
A matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) assisted genome mining strategy was developed for the discovery of glycosyltransferase (GT) from the root of Platycodon grandiflorum. A di-O-glycosyltransferase PgGT1 was discovered and characterized that is capable of catalyzing platycoside E (PE) synthesis through the attachment of two β-1,6-linked glucosyl residues sequentially to the glucosyl residue at the C3 position of platycodin D (PD). Although UDP-glucose is the preferred sugar donor for PgGT1, it could also utilize UDP-xylose and UDP-N-acetylglucosamine as weak donors. Residues S273, E274, and H350 played important roles in stabilizing the glucose donor and positioning the glucose in the optimal orientation for the glycosylation reaction. This study clarified two key steps involved in the biosynthetic pathway of PE and could greatly contribute to improving its industrial biotransformation.  相似文献   
20.
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)33+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle “cores” before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)33+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号